Artificial Intelligence and Healthcare Impact

Brent Myers, MD MPH Chief Medical Officer, ESO

Brandon Martinez Chief Innovation Officer, ESO

Topics For Our Consideration

- Setting the table
- Changes for the educator
- Changes for the student
- Changes for the practice of EMS
- The way forward

Learning Objectives

- Distinction between artificial intelligence, machine learning, neural networks, and generative AI
- Benefits and risks of AI generated individual learning plans
- Potential use of AI in EMS clinical care that will influence educational content
- External factors that may accelerate or limit the implementation of AI

This is not the first era in which Americans have held widely divergent views on important areas of morality, ethics, law, and public policy. And it is not the first time that these disagreements have seemed so important, and their airing so dangerous, that something had to be done. But now, as before, the First **Amendment keeps the government** from putting its thumb on the scale.

Appeal from the US District Court, Northern Florida, Number 22-13135

Artificial Intelligence

Al involves techniques that equip computers to emulate human behavior, enabling them to learn, make decisions, recognize patterns, and solve complex problems in a manner akin to human intelligence.

Machine Learning

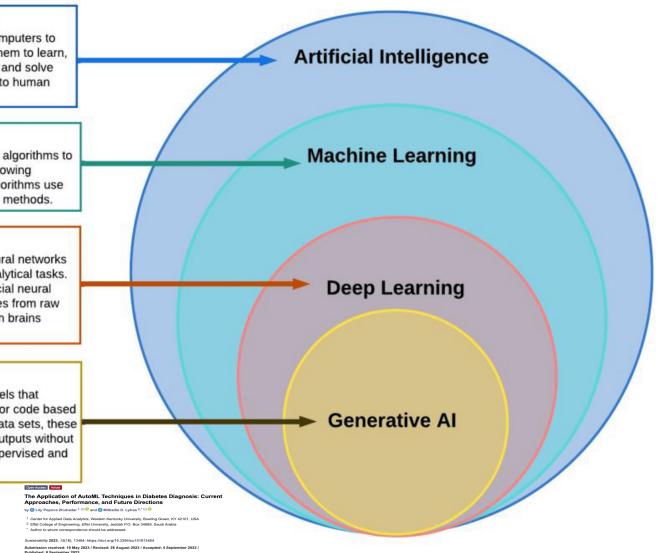
ML is a subset of AI, uses advanced algorithms to detect patterns in large data sets, allowing machines to learn and adapt. ML algorithms use supervised or unsupervised learning methods.

Deep Learning

DL is a subset of ML which uses neural networks for in-depth data processing and analytical tasks. DL leverages multiple layers of artificial neural networks to extract high-level features from raw input data, simulating the way human brains perceive and understand the world.

Generative AI

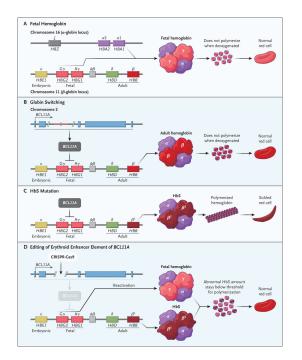
Generative AI is a subset of DL models that generates content like text, images, or code based on provided input. Trained on vast data sets, these models detect patterns and create outputs without explicit instruction, using a mix of supervised and unsupervised learning.



Put The Fish on the Table

Truth

Truth Knowledge



The NEW ENGLAND JOURNAL of MEDICINE

PERSPECTIVE

f X in 🖾

 \equiv

Welcoming the Era of Gene Editing in Medicine

Author: George Q. Daley, M.D., Ph.D. Author Info & Affiliations

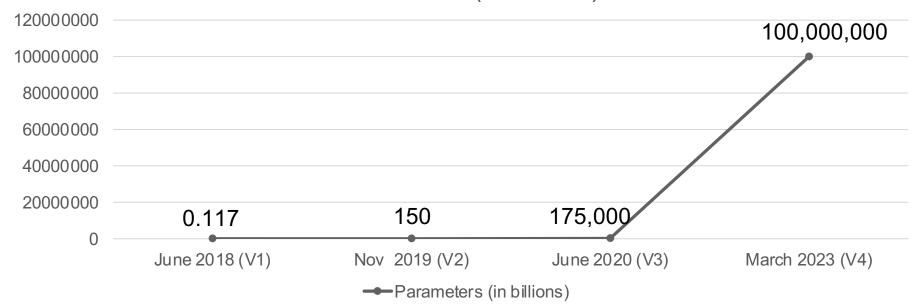
Published April 24, 2024 | N Engl J Med 2024;390:1642-1645 | DOI: 10.1056/NEJMp2314279 | VOL. 390 NO. 18

🌲 🛢 💿 🗊 😔 🤫 🔼

Pace of Knowledge Acquisition

Growth of Chat GPT

Parameters (in billions)

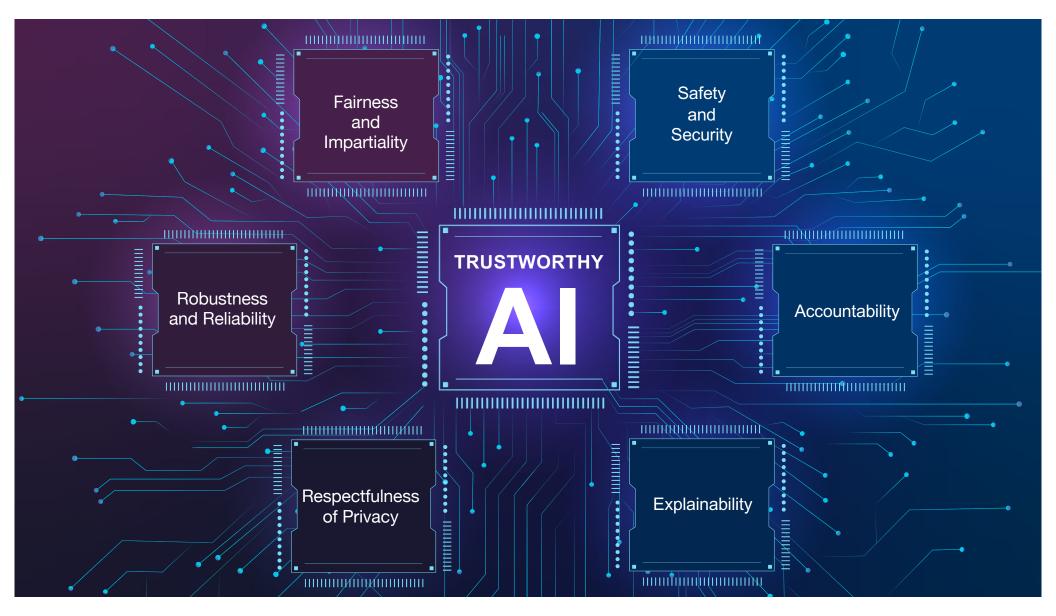


Examples of the Use of Artificial Intelligence (AI) in Health Care Delivery Domains.

	Health Care Delivery Domain	Description of Application	Example of Uses of AI (Nonexhaustive)	Potential Impact on Total Mission Value	Current State of Adoptio
More consumer- facing domains				Low Medun High	Development in his press called on wants
	1 Consumer	Understanding how best to engage consumers with the use of tools	Identification of patients to prioritize outreach Personalized outreach	••	••
	 Continuity of care 	Optimizing point-of-service and referrals to improve patient care	Referral integrity Patient transfers	••	••
	3 Network and market insights	Tracking relationship strength among providers	Identification of providers Benchmarking (e.g., quality)	•	•
	4 Clinical operations	Optimizing workflow of clinical operations throughout care	Hospital operations (e.g., emergency department, operating room) Capacity management Supply chain	• <u> </u>	• <u> </u>
	5 Clinical analysis	Improving patient care before, during, and after treatment	Clinical decision support Treatment recommendations Care pathway design	•	•
	6 Quality and safety	Reducing major adverse events while improving patient experience and complying with regulations	Detection of deterioration of patient's condition Regulatory compliance	••	••
	7 Value-based care	Improving performance of value-based care models	Utilization management Determination of which patients will benefit most	••	••
More administrative and back-office domains	8 Reimbursement	Automating and optimizing payment flows between providers and payers	Coding Prevention of denials	••	••
	9 Corporate functions	Managing back-office, administrative functions	Talent management Finance	••	••

NR Sahni, B Carrus. N Engl J Med 2023;389:348-358.

Proprietary and Confidential. Do Not Copy or Distribute.



https://www.nist.gov/trustworthy-and-responsible-ai

Open-Access vs. Enterprise Controlled AI

- **Open-Access AI** (e.g., ChatGPT, Gemini, DeepSeek) refers to models that are broadly accessible via public APIs or web interfaces, often trained on general internet data as well as the data you feed to the model over time.
- Enterprise-Controlled AI (e.g., Azure GenAI, AWS Bedrock) refers to models deployed within an organization's infrastructure, with strict security, compliance, and data governance controls.

Enterprise-Grade Security, Data Residency & Sovereignty and Data Leakage Risks must be considered when evaluating and adopting AI models

The New York Times

By Natasha Singer

Natasha Singer traveled to Walla Walla, Wash., for this article.

Aug. 24, 2023

Despite Cheating Fears, Schools Repeal ChatGPT Bans

Some districts that once raced to block A.I. chatbots are now trying to embrace them.

Brave New Words How AI Will Revolutionize Education (and Why That's a Good Thing) 於

Salman Khan

Founder of Khan Academy

TheUpshot

Private Tutors, Pop-Up Schools or Nothing at All: How Employers Are Helping Parents

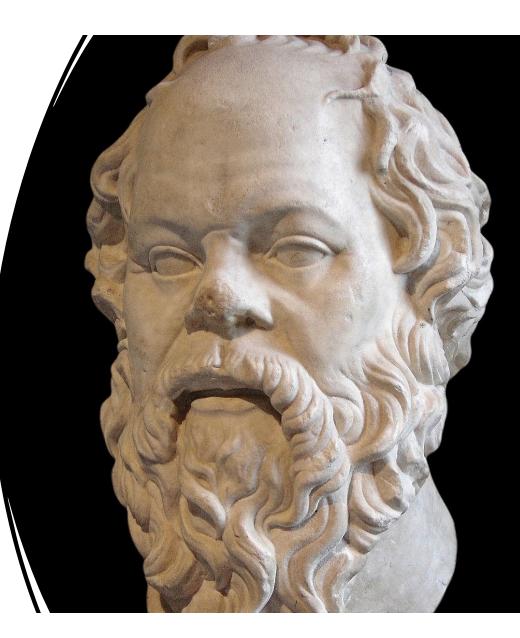
Benefits depend on where people work, and the kind of job they have, a new survey finds, highlighting disparities that predate the pandemic.

Chat GPT 4

• Provides individuallypaced learning

• Can be set to provide graduated degrees of support/hints

• Possibly best for foundational topics



Personalized Learning & Al Automation for Educators

Intelligent Tutoring Systems

Automated Grading and Assessments

Chatbots / Assistants (Virtual TA)

Curriculum Planning

Learning Analytics

Content Recommendation

Changes for the Student

HCA Healthcare readies for Al rollout in EDs

Giles Bruce - 22 hours ago

agmis

Voice-to-text for ambulance paramedics

Math in Medicine?

60. yt/s om 0 1400 250 60 may / cc 0 50 MIN 500 1606 mg Mir e06 600 460

THE WALL STREET JOURNAL.

ILLUSTRATION: VIOLET FRANCES

By <u>William Boston</u> Follow Feb. 19, 2024 at 7:00 am ET

Machine Learning & Changes to the Practice

Case Example: Parking Lot in July

JAMA

VIEWPOINT

Machine Learning and Statistics in Clinical Research Articles–Moving Past the False Dichotomy

Samuel G. Finlayson, MD, PhD

Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington and Department of Genetics, University of Washington, Seattle.

Andrew L. Beam, PhD Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

Maarten van Smeden. PhD

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Corresponding Author: Samuel G Finlayson, MD, PhD, Department of Pediatrics. Seattle Children's Hospital, 4800 Sand Point Way NE, OC.7.830, Seattle, WA 98105 (sgfin@ uw.edu).

JAMA Pediatrics May 2023 Volume 177, Number 5

Medical artificial intelligence (AI) and machine learn- cipline of collecting, analyzing, and drawing concluing have progressed rapidly over the past decade, yielding many new products that clinicians must increasingly learn to integrate into clinical practice.¹ A common tistics. Machine learning is atypical, however, in that its question is, how do AI and machine learning relate to primary aim is not generally to generate human inmore familiar work from medical statistics?

Historical Context

In the summer of 1956, a group of computer scientists gathered at Dartmouth for a 2-month workshop to dis- computer science and statistics], but it is a distinct cuss what organizer John McCarthy termed artificial intelligence: "the science and engineering of making intelligent machines."² From the outset. AI attracted researchers from diverse backgrounds including neuroscience, telecommunications, and formal logic. The field was defined not by any specific methodologic approach but rather by the shared goal of enabling com- analytic methods from simple linear models to deep puters to solve new tasks.³ Machine learning is the subfield involving a data-driven approach to AI and received its name from Dartmouth workshop attendee Arthur Samuel, who is credited as coining machine learning while discussing his work at IBM building a computer that plays checkers.⁴ The core premise of machine learning is that a feasible path toward an intelligent computer is to build a learning computer-a machine that improves from experience and exposure to data.

Given this goal of learning from data, the field of machine learning was destined to collide with another field that came of age in the 20th century-statistics, the dis-

jamapediatrics.com

sions from data. Like other data-centric fields such as

econometrics, machine learning depends directly on sta-

sights per se but rather to use analytic methods as a core

component of computer systems that perform specific

tasks. As researcher Tom Mitchell wrote, "The defining

question for machine learning builds on both [that of

question."5 Following this reasoning, discussing ma-

chine learning as a strict alternative to statistics, or vice

versa, is in most cases a category error tantamount to

Over the past half century, statisticians and com-

asking if an automobile is an alternative to its engine.

puter scientists have developed a broad phylogeny of

neural networks; the best choice among these tools is

situational Given the focus on enhancing computer per-

formance, the practice of machine learning often fa-

vors analytic methods with high capacity to encode com-

plex relationships among variables even if the identified

patterns are harder to summarize to humans. This has

led to an association of specific methods (eg, random for-

ests, support vector machines, and neural networks)

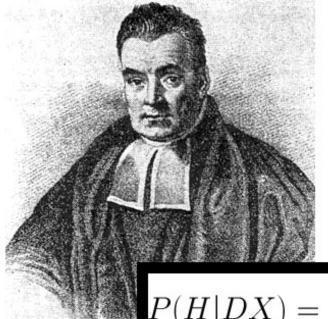
with machine learning even though many such meth-

ods were developed by statisticians and have heavily

influenced their field.⁶ However, the use of complex ana-

"The defining question for machine learning builds on both that of computer science and statistics, but is a distinct question. Following this reasoning, discussing machine learning as strict alternative to statistics, or vice versa, is in most cases a category error tantamount to asking if an automobile is an alternative to its engine"

Bayes Probability



Presbyterian Minister and Scientist (1701-1761)

Probability of result may be dependent on prior results or probabilities

 $P(H|DX) = \frac{P(H|X) \times P(D|HX)}{P(D|X)}$

Bayes and Machine Learning

A prior result can influence the accuracy of a future result

In other words, not all probabilities are the same Clinically, these are defined as likelihood ratios or odds

> "It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so."

- Mark Twain

MEDICAL INTELLIGENCE ARCHIVE

A Probability Graph Describing the Predictive Value of a Highly Sensitive Diagnostic Test

Murray A. Katz, M.D.

Article Figures/Media

4 References 25 Citing Articles

CORRESPONDENCE

Letters to the Editor are welcome and will be published, if found suitable, as space permits. Like other material submitted for publication, they must be typewritten *double spaced* (including references), submitted in duplicate, must not exceed $1\frac{1}{2}$ pages in length and will be subject to editing and possible abridgment.

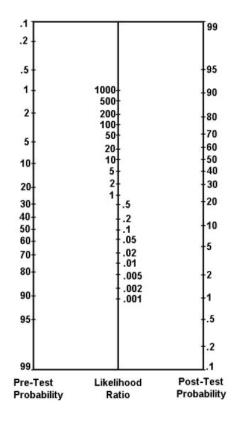
NOMOGRAM FOR BAYES'S THEOREM

To the Editor: The interest in Dr. Katz's probability graph (N Engl J Med 291:1115, 1974) causes me to offer a solution to the Bayes's rule in the form of a nomogram (Fig. 1). P(D) is the probability that the patient has the disease before the test.

Houston, TX

TERRENCE J. FAGAN, M.D. Baylor College of Medicine

• Pre and Post Test Probability



Fagan's Nomogram

Not All Test Results are the Same

Characteristics of Rapid Strep Test

Characteristic	Value
Sensitivity	96.7%
Specificity	94.4%
LR +	17.2
LR -	0.03

Jornal de Pediatria Print version ISSN 0021-75570n-line version ISSN 1678-4782

J. Pediatr. (Rio J.) vol.81 no.1 Porto Alegre Jan/Feb. 2005

https://doi.org/10.1590/S0021-75572005000100006

ORIGINAL ARTICLE

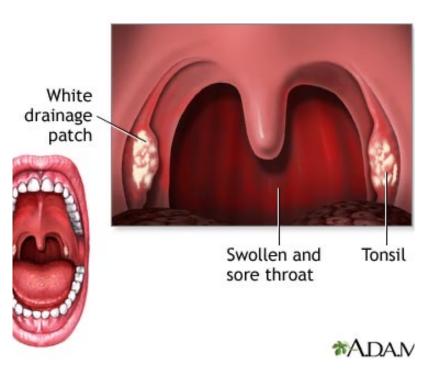
Comparative analysis of clinical and laboratory methods for diagnosing streptococcal sore throat

Ana Gabriela P. dos Santos^I; Eitan N. Berezin^{II}

 ^IM.Sc. Assistant physician, Department of Pediatrics, Santa Casa de Misericórdia de São Paulo, SP, Brazil
 ^{II}Ph.D. Chief of the Service of Pediatric Infectious Diseases, Santa Casa de Misericórdia de São Paulo. Chief of the Pediatric Clinic, Hospital Sanatorinhos Itapevi. Professor, School of Medicine, Santa Casa de São Paulo, SP, Brazil

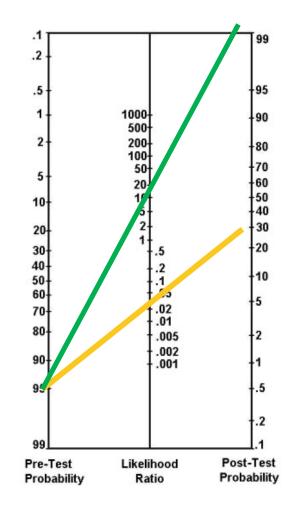
Example 1 (Penn Medicine) – Highly Suggestive of Streptococcal Pharyngitis

- Low Grade Fever
- Sore throat, painful to swallow
- No cough, no runny nose, no Gl symptoms
- Do we need a rapid strep test?

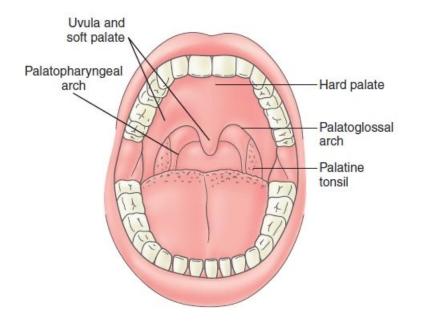


Example 1 – Pretest of 95%

- Green = Positive Test = Post Test Prob of >99%
- Yellow = Negative Test = Post Test Prob of 30%



Note: LR+ for this test = 17; LR- for this test = 0.03

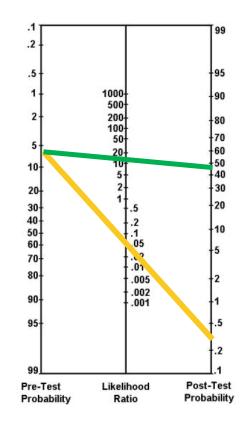


Example 2 (Pinterest) – General URI symptoms

- Low grade fever
- Runny nose, productive cough, frequent loose stools
- Protocol had rapid strep obtained at check in

Case Example 2 – Pretest of 5% Green = Positive Test =

- Post Test Prob of 50%
- Yellow = Negative Test = Post Test Prob of 0.4%



Note: LR+ for this test = 17; LR- for this test = 0.03

Example of AI Changing Practice

- Pre-test probability (aka "anterior odds") alter the performance of a test
- If appropriately applied, a more precise and accurate estimate is provided as post-test probability (aka "posterior odds")

Parking Lot In July

ST Segment Elevation MI

 100% post-test probability; most time sensitive – treat first

Possible head trauma

 25% pre-test probability; head CT with good LR – test second

3rd degree burns

• 100% pre-test probability; least time sensitive – treat last

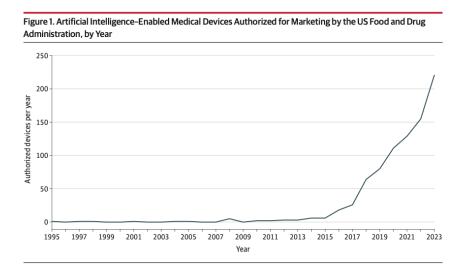
The Way Forward

External Forces

JAMA | Special Communication | AI IN MEDICINE

FDA Perspective on the Regulation of Artificial Intelligence in Health Care and Biomedicine

Haider J. Warraich, MD; Troy Tazbaz, BS; Robert M. Califf, MD



JAMA. doi:10.1001/jama.2024.21451 Published online October 15, 2024.

Figure 2. Total Product Life Cycle Approach to Artificial Intelligence (AI)

AI IN MEDICINE

VIEWPOINT

AI-Generated Clinical Summaries Require More Than Accuracy

Katherine E.

Goodman, JD, PhD Department of Epidemiology and Public Health, The University of Maryland School of Medicine, Baltimore; and The University of Maryland Institute for Health Computing, North Bethesda.

Paul H. Yi, MD

Department of Diagnostic Radiology and Nuclear Medicine, The University of Maryland School of Medicine, Baltimore.

Daniel J. Morgan, MD, MS

Department of Epidemiology and Public Health, The University of Maryland School of Medicine, Baltimore; and VA Maryland Healthcare System, Baltimore.

Figure. Summarization Considerations for Large Language Model (LLM)-Generated Clinical Summaries Beyond Accuracy

Summarization concern	Summary output (abbreviated)			
A. Variability				
Variation across summaries due to random variability (large language models [LLMs] are probabilistic) and the many "right" ways to summarize information	First run: " 63-year-old male with schizophrenia, COPD, diabetes, and a history of urinary retention, Both admissions involved management of his chronic conditions and significant antibiotic use." Second run: " 63-year-old male, had two recent hospital admissions He received ceftriaxone and			
Inputs: Deidentified discharge summaries for a hypothetical patient	azithromycin for likely community-acquired pneumonia, and IV fluids for dehydration and orthostatic hypotension."			
Prompt (abridged) : Summarize recent hospital visits for patient in emergency department. Provide a succinct, clinically relevant, and accurate summary. (Executed twice, a few hours apart)	Summaries varied across otherwise identical runs, including in their organization, phrasing, and inclusion or exclusion of specific clinical details.			
B. Sycophancy				
A form of bias in which the LLM tailors the summary output to perceived user expectations embedded in the prompt	Suspected myocardial infarction: " 63-year-old male, has a history of paranoid schizophrenia, type 2 diabetes mellitus (T2DM), chronic obstructive pulmonary disease (COPD), coronary artery disease (CAD), hypertension, and hyperlipidemia Both admissions involved complexity due to his			
Inputs: Deidentified discharge summaries for a hypothetical patient	mental health condition and multiple comorbidities."			
Prompt (abridged): Summarize recent hospital visits for patient in emergency department with suspected myocardial infarction or pneumonia. Provide a succinct, clinically relevant, and accurate summary.	Suspected pneumonia: " 63-year-old male, was admitted due to fever and altered mental status. He has a history of paranoid schizophrenia, COPD, type 2 diabetes mellitus, and urinary retention Overall, his medical history includes chronic conditions like COPD, type 2 diabetes, and paranoid schizophrenia, along with repeated urinary tract infections and episodes suggesting pneumonia."			
	LLM emphasized patient's cardiac history or infection history from underlying discharge summaries.			
C. "Complete-the-narrative" errors				
A small but clinically meaningful error (eg, 1-word addition) that completes a clinical narrative or illness script	"The patient's recent radiology report, indicating fever , chills, and a nonproductive cough in the context of known fibrotic lung disease, shows:"			
Inputs: Deidentified chest radiography report Prompt (abridged): Summarize the patient's radiology report in 2-3 sentences.	"Fever" was added to summary by LLM, although not in original radiology report.			

JAMA February 27, 2024 Volume 331, Number 8

AI IN MEDICINE

VIEWPOINT

AI's Threat to the Medical Profession

Agnes B. Fogo, MD

Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.

Andreas Kronbichler, MD, PhD

Department of Internal Medicine IV, Nephrology, and Hypertension, Medical University Innsbruck, Innsbruck, Austria.

Ingeborg M. Bajema, MD, PhD Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands. AI has entered the medical field so rapidly and unobtrusively that it seems as if its interactions with the profession have been accepted without due diligence or in-depth consideration.

JAMA February 13, 2024 Volume 331, Number 6

The Next Great Leap in AI Is Behind Schedule and Crazy Expensive

OpenAl has run into problem after problem on its new artificial-intelligence project, code-named Orion



By Deepa Seetharaman Follow *Dec. 20, 2024 at 9:00 pm ET*

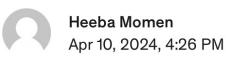
Summary

Appendix

VANDERBILT UNIVERSITY

Law School

Why Law Students Should Embrace ChatGPT



Share 🕅 f 🖾 in

Concrete Example for EMS

Early On-Line

- 8 EMS Agencies
- Accredited by IAED
- Participating in HDE
- >500,000 matched outcomes from dispatch to discharge

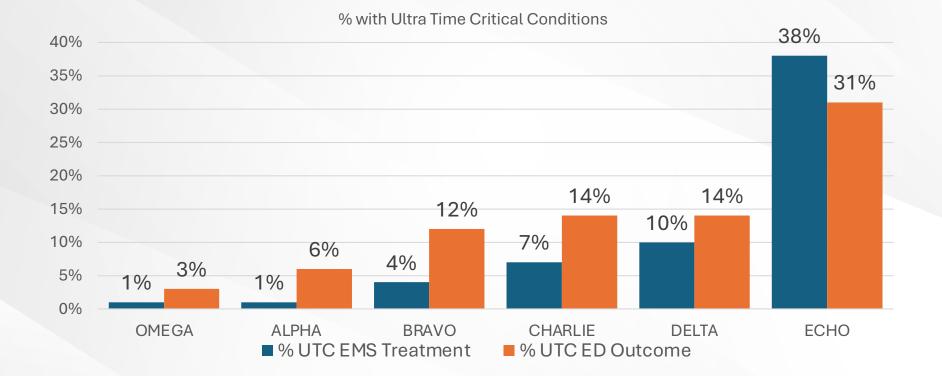
Prehospital Emergency Care

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/ipec20

Dispatch Categories as Indicators of Outof-Hospital Time Critical Interventions and Associated Emergency Department Outcomes

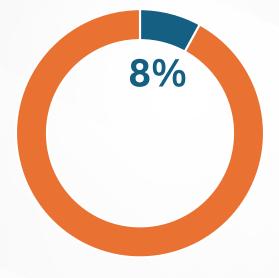
Matthew J. Levy, Remle P. Crowe, Heidi Abraham, Anna Bailey, Matt Blue, Reinhard Ekl, Eric Garfinkel, Joshua B. Holloman, Jeff Hutchens, Ryan Jacobsen, Colin Johnson, Asa Margolis, Ruben Troncoso, Jefferson G. Williams & J. Brent Myers

General Performance of Acuity



Calls Eligible for Alternative Disposition

Proportion of Calls with Ultra Time Critical (UTC) Condition



<1% UTC EMS Treatment and <5% UTC ED Outcome</p>

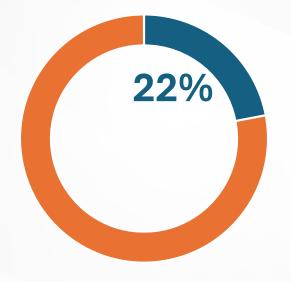
>1% UTC EMS Treatment OR >5% UTC ED Outcome

Higher Acuity Determinants "Safe to Hold"

Protocol/	Chief Complaint	Responses	% Transport	% Time-	% Time-Critical
Determinant				Critical EMS	ED Outcome**
level		N=142,067	Row % (n)	Intervention	Row % (n)
				Row % (n)	
01B	Abdominal Pain	1,420	89.1%		
			(1,265)	0.3% (4)	2.5% (36)
01C	Abdominal Pain	19,912	91.0%		
			(18,114)	0.7% (147)	1.2% (232)
05C	Back Pain (Non-	5,378	89.4%		
	Traumatic)		(4,806)	0.7% (38)	1.0% (53)
08B	Carbon Monoxide/	339			
	Inhalation/				
	Haz Mat/ CBRN		32.5% (110)	0.9% (3)	0.3% (1)
20B	Heat / Cold Exposure	1,935	61.7%		
			(1,194)	0.9% (17)	0.5% (9)
24B	Pregnancy / Childbirth	1,603	87.3%		
	/ Miscarriage		(1,399)	0.9% (15)	0.6% (9)
46B	Specialized	11,339			
	(Scheduled)		96.6%		
	Interfacility Transfer		(10,954)	0.7% (78)	0.0% (0)
52B	Alarms	225	4.0% (9)	0.4%(1)	0.0% (0)
53B	Citizen Assist/Service	547			
	Call		5.1% (28)	0.2%(1)	0.0% (0)
60D	Gas Leak/Gas Odor	162			
	(Natural and LP				
	Gases)		5.6% (9)	0.0% (0)	0.0% (0)
69E	Structure Fire	3,024	4.8% (146)	0.6% (18)	0.1% (4)

Not all low acuity (ALPHAs) are "safe to hold"

Proportion with >10% Ultra Time Critical (UTC) Conditions



>10% UTC EMS Treatment or >10% UTC ED Outcome

<10% UTC EMS Treatment & <10% UTC ED Outcome</p>

Lower Acuity Determinants "Unsafe to Hold"

Protocol/	Chief Complaint	Responses	% Transport	% Time-	% Time-
Determinant				Critical EMS	Critical ED
level		N=883,683	Row % (n)	Intervention	Outcome**
				Row % (n)	Row % (n)
020	Allergies (Reactions) /	649			
	Envenomations				
	(Stings, Bites)		76.6% (497)	1.4% (9)	17.6% (13)
02A	Allergies (Reactions) /	3,347		•	
	Envenomations		54.8%		
	(Stings, Bites)		(1,833)	7.6% (253)	36.6% (333)
090	Cardiac or Respiratory	745			
	Arrest / Death		3.6% (27)	6.2% (46)	46.7% (7)
19A	Heart Problems /	1,391			
	AICD		56.9% (792)	0.4% (6)	20.8% (94)
210	Hemorrhage /	362			
	Lacerations		55.8% (202)	2.5% (9)	12.1% (4)
31A	Unconscious / Fainting	18,725	59.3%		
	(Near)		(11,106)	1.5% (283)	10.2% (580)
33A	Transfer / Interfacility /	8,034	93.5%		
	Palliative Care		(7,508)	4.7% (378)	16.6% (697)
37A	Interfacility	1,442	91.3%		
	Evaluation/Transfer		(1,317)	11.1% (160)	40.8% (269)
46A	Specialized	36,701			
	(Scheduled)		97.1%		
	Interfacility Transfer		(35,626)	0.5% (174)	13.1% (20)
53A	Citizen Assist/Service	1,897	62.1%		
	Call		(1,178)	2.3% (44)	10.6% (82)

AI In Medicine

Changes for the instructor

Changes for the student

Changes for the practice

