

Using Pathophysiology as the Basis for Teaching in the EMS Classroom

Joseph J. Mistovich, M.Ed, NRP
Professor Emeritus
Chairperson & Professor (Retired)
Youngstown State University
Youngstown, Ohio
jjmistovich@gmail.com

Pathophysiology in EMS Education

What pathophysiology is needed for the EMS student to understand the material that the educator will be or is presenting?

Is the pathophysiology relevant to EMS and the level of provider?

Can you as the educator apply the pathophysiology clinically to promote an understanding of emergency conditions?

- Assessment
- Treatment

Can the <u>student</u> <u>use</u> and <u>apply</u> the pathophysiology clinically to "figure out" assessment findings and treatment for other conditions?

Moving from a Teacher-Centered Education to a Student Centered-Education

My Personal Experience with Pathophysiology-Based EMS Education

Throw out PPT and use a whiteboard or chalkboard

Use in all clinical subject areas

Constantly
explain the
relevance and
apply the
lessons
clinically

Provide foundational information

Facilitate student-led discussion

Build on previous knowledge – anatomy, physiology, pathophysiology

Encourage, praise, correct, direct, commend

Engage all students

Teach It and learn it forward and backwards

Understand don't memorize Constantly challenge students to use pathophysiology to "figure it out"

"It all makes sense"

What Pathophysiology Is Relevant to EMS? Top 12 Topics

- 1. Cellular metabolism (Aerobic vs. Anaerobic, By-products)
- 2. Composition of Ambient Air (Percentages and Pressures)
- 3. Patency of the Airway (Structures, Muscle Flaccidity, Adult vs. Pediatric)
- 4. Mechanics of Ventilation (Structures, Changes in Pressures, Boyle's Law, Water Glass Effect, Airway Resistance, Compliance, Active vs. Passive, Cardiothoracic Pump Effect, Valsalva Maneuver, Minute Ventilation vs. Alveolar Ventilation)

What Pathophysiology Is Relevant to EMS? Top 12 Topics

- 5. Control of Ventilation (Medullary Rhythm Centers VRG &DRG, Chemoreceptors)
- 6. Local Regulation of Vessels & Bronchioles to Changes in Gas Transport (Haldane and Bohr Effect)
- 7. Ventilation/Perfusion (V/Q) Ratio (Hypoxia, Hypoxemia, Hypercarbia)
- 8. Blood Composition, Fluids, and Electrolytes (Osmosis, Diffusion, Active Transport)

What Pathophysiology Is Relevant to EMS? Top 12 Topics

- 9. Transport of Gases by the Blood (O2, CO2, Plasma, Bicarbonate)
- 10. Hemodynamics (BP, CO, SV, Preload, Myocardial Contractility, Afterload, SVR)
- 11. Microcirculation (Local, Neural, and Hormonal Control)
- 12. Acid- Base Balance (Respiratory and Metabolic Components)

Depth and Breadth is Determined by the Level of Provider Education

EMT Advanced EMT Paramedic

Teach It Forward and Teach It Backward

Pathophysiology

Vasodilation SVR Vasoconstriction SVR

Clinical Assessment Finding

Warm, red, flushed, dry skin Pale, cool, clammy skin

DBP

DBP

Clinical Assessment Finding Pathophysiology

Warm, red, flushed skin DBP Vasodilation SVR Pale, cool, clammy skin DBP Vasoconstriction SVR

Apply the Pathophysiology Clinically

Aerobic Respiration vs Anaerobic Respiration

MVC with Two Patients

Aerobic Respiration vs Anaerobic Respiration

- Driver screaming and yelling for help c/o open fracture of humerus and severe pain.
- Passenger Sitting calmly and slow to respond to questions.
- ATP allows cell to function or change structure
- Mental status implication
- Why is patient warmth an issue?
- CO2 vs Latic acid
- CO2 + H2O = H2CO3
- Fever of 1 degree F or 0.6 degrees C increases HR by 10 bpm. (Fever of 101.6 = 30 bpm HR increase)

Science Facts at

How Cells Die -Sodium/Potassium Pump Failure

Aerobic metabolism = 36 ATP Anaerobic metabolism = 2 ATP

Pathophysiologic Principles

Student Responsibility - Preparation

- Resources
 - Textbook
 - MyLab (exercises, quizzes)

 Teacher Facilitated – Lecture/Discussion of Foundational Information

- NO PPT
- Whiteboard or chalkboard
- Student-Centered and Teacher-Facilitated Discussion (Assessment Findings, Treatment)
 - Whiteboard or chalkboard

What Pathophysiology Is Necessary to UNDERSTAND Anaphylaxis?

1. Cellular metabolism

Poor Perfusion and low ATP production

2. Composition of Ambient Air

Need for oxygen therapy

3. Patency of the Airway

Laryngeal edema and airway resistance (capillary permeability issue)

4. Mechanics of Ventilation

Respiratory distress vs. Respiratory failure When to provide PPV vs. oxygen therapy

What Pathophysiology Is Necessary to UNDERSTAND Anaphylaxis?

5. Control of Ventilation

Respiratory Rate and Tidal Volume Changes

Chemoreceptor response to low O2 and high CO2

6. Local Regulation of Vessels & Bronchioles to Changes in Gas Transport

Metabolic acid vasodilates

Bronchioles with low CO2 constrict

Peripheral increase in CO2 vasodilates

Alveolar capillaries with high CO2 and low O2 constrict and shunt blood (effect of increase in hydrostatic pressure with an increased capillary permeability)

7. Ventilation/Perfusion

Explains the hypoxemia and cellular hypoxia and treatment

Ventilation disturbance

Perfusion disturbance

8. Blood Composition, Fluids, and Electrolytes

Increased capillary permeability

Interstitial edema

Intravenous fluid of choice in treatment

What Pathophysiology Is Necessary to UNDERSTAND Anaphylaxis?

9. Transport of Gases by the Blood

Hypoxemia

Hypercarbia

Cellular Hypoxia

10. Hemodynamics

Poor perfusion state – Hypotension due to decreases in SVR and Preload

 $BP = CO \times SVR$

CO = HR x SV (preload, myocardial contractility, afterload)

11. Microcirculation

Peripheral vasodilation effect on BP & perfusion

SVR changes

Skin signs and blood pooling

12. Acid- Base Balance

Respiratory acidosis

Metabolic acidosis

pH and H+ ion concentration

- Decrease in plasma oncotic pressure
- Increase in hydrostatic pressure
- Increase in capillary permeability
- Lymphatic channel obstruction

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

- Decrease in plasma oncotic pressure
- Increase in hydrostatic pressure
- Increase in capillary permeability
- Lymphatic channel obstruction

Laryngeal edema

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Hemodynamics of Blood Pressure

Foundation Information

Foundational Information

Student-Led Activity — List Pathophysiologic Effects of Chemical Mediators

Next Activity – Determine Assessment Findings Related to Pathophysiology

- Pathophysiology Assessment Finding
- Increased Capillary Permeability Peripheral Edema
 Stridor
- Pathophysiology
 Assessment Finding
- Bronchiole Smooth Muscle Contraction Wheezing
- Increased capillary permeability Bronchiole Mucosal Inflammation Cough

Pathophysiology	What Are the Assessment Findings?
Increase in capillary permeability	The student provides the pathophysiology and then
Vasodilation	determines the assessment finding
Bronchiole Smooth Muscle Contraction	related to that pathophysiology
Other Smooth Muscle Contraction	Pathophysiology Assessment Finding
Platelet Aggregation (PAF)	
Decrease in CO (MDF)	
Coronary Artery Constriction (Thromboxane)	
Increase mucous production	

Pathophysiology	What Are the Assessment Findings
Increase in capillary permeability	Rhinitis, laryngeal edema (stridor), hoarseness, throat tightness, tachycardia, urticaria, pruritis, angioedema, diarrhea
Vasodilation	Nasal congestion, tachycardia, hypotension, lightheadedness, weakness, syncope, hypotension, chest pain, tingling, warmth sensation, flushed skin, anxiety, headache,
Bronchiole Smooth Muscle Contraction	Wheezing, retrosternal tightness, tachypnea, dyspnea, cyanosis, respiratory distress, decreased SpO2, anxiety, restless, agitated, sleepy
Other Smooth Muscle Contraction	Dysphagia, GI cramping, nausea, vomiting, tenesmus, urinary incontinence, uterine cramping, pelvic pain
Platelet Aggregation (PAF)	Bruising, abnormal bleeding, DIC, vaginal bleeding
Decrease in CO (MDF)	Tachycardia, hypotension,
Coronary Artery Constriction (Thromboxane)	Chest pain, dysrhythmias,
Increase mucous production	Cough, rhonchi,
Stimulation of Nerve Endings	Sneezing, ocular itching, increased lacrimation, red eyes

Assessment Finding	What is the Pathophysiology	Assessment Finding	What is the Pathophysiology	Assessment Finding	What is the Pathophysiology
Urticaria	#1 or ICP				
Flushed Skin	#5 or V				
The student pr	rovides the asse	ssment finding a	and then must d	etermine	
the associated	d pathophysiolog	gy			
Path	ophysiolog	y A	ssessment	Finding	

- 1. Increase in capillary permeability (ICP)
- 2. Platelet aggregation (PA)
- 3. Increase mucous production (IMP)
- 4. Bronchiole/other smooth muscle constriction (BOSMC)
- 5. Vasodilation (V)

- 6. Decrease in cardiac output (DCO)
- 7. Coronary artery constriction (CAC)
- 8. Nerve ending stimulation (NES)

Assessment Finding	Pathophysiology	Assessment Finding	Pathophysiology	Assessment Finding	Pathophysiology
Urticaria	1 or ICP	Dysrhythmias	7, 4	N/V	4, 3
Flushed Skin	5 or V	Hypotension	1, 5, 6,	Dyspnea	4
Sneezing	8 or NES	Abnormal bleeding	2	Headache	5
Cough	3	GI cramping	4	Vaginal bleeding	2
Chest pain	7	Retrosternal tightness	4	Tingling	5
Tachycardia	6, 5, 1	Tachypnea	4	Urinary incontinence	4
Bruising	2	Uterine cramping	4	Agitated	4
Dysphagia	4	Lightheadedness	5	Syncope	5
Wheezing	4	Tenesmus	4	DIC	2
Nasal congestion	5	Warmth feeling	5	Sleepy	4
Rhinitis	1	Hoarseness	1	Pelvic pain	4
Laryngeal edema (stridor)	1	Throat tightness	1	Cyanosis	4
Ocular itching	8	Increased Lacrimation	8	Red eyes	8, 5
Rhonchi	3	Anxiety	4, 5,6	Decreased SpO2	4
Urticaria	1	Pruritis	1	Angioedema	1
Diarrhea	1, 4				

- 1. Increase in capillary permeability (ICP)
- 2. Platelet aggregation (PA)
- 3. Increase mucous production (IMP)
- 4. Bronchiole/other smooth muscle constriction (BOSMC)
- 5. Vasodilation (V)

- 6. Decrease in cardiac output (DCO)
- 7. Coronary artery constriction (CAC)
- 8. Nerve ending stimulation (NES)

Based on Pathophysiology and the Related Assessment Findings the Student Must Then Determine Treatment What Are the Immediate Life Threats?

Airway closure/obstruction

Respiratory Failure

Severe Hypoxemia

Poor Perfusion

Reverse the Pathophysiology and Eliminate the Immediate Life Threats and Signs and Symptoms

What Are the Immediate Life Threats Based on the Pathophysiology?

Airway closure/obstruction

• Laryngeal edema due to increased capillary permeability

Respiratory Failure

- Bronchoconstriction
- Bronchiole inflammation due to increased capillary permeability

Severe Hypoxemia

- Bronchoconstriction
- Bronchiole inflammation due to increased capillary permeability
- Vasodilation

Poor Perfusion

- Vasodilation
- Increased capillary permeability

How Do You Reverse The Pathophysiology?

Vasoconstrict

Bronchodilation

Airway closure/obstruction

Laryngeal edema due to increased capillary permeability

Respiratory Failure

- Bronchoconstriction
- Bronchiole inflammation due to increased capillary permeability

Severe Hypoxemia

- Bronchoconstriction
- Bronchiole inflammation due to increased capillary permeability
- Vasodilation

Poor Perfusion

- Vasodilation
- Increased capillary permeability

Why Not Just Give Diphenhydramine?

MEDIATORS OF ANAPHYLAXIS

- Histamine: stimulates vasodilation and increases vascular permeability, part rate, cardiac contraction, and glandular secretion.
- coronary vasoconstrictor, and peripheral vasodilator.
- Leukotrienes: produce bronchoconstriction, increase vascular permeability, and promote airway remodeling.
- Platelet-activating factor: is also a potent bronchoconstrictor and increases vascular permeability.
- Tumor necrosis factor: activates neutrophils, recruits other effector cells, and enhances chemokine synthesis.

How do you reverse the pathophysiology?

Vasoconstrict Alpha 1 & 2
Bronchodilation

Isotonic fluid

Beta 2

Airway closure/obstruction

Laryngeal edema due to increased capillary permeability

Respiratory Failure

- Bronchoconstriction
- Bronchiole inflammation due to increased capillary permeability

Severe Hypoxemia

- Bronchoconstriction
- Bronchiole inflammation due to increased capillary permeability
- Vasodilation

Poor Perfusion

- Vasodilation
- Increased capillary permeability

Epinephrine – Drug of Choice

- The stridor is still severe indicating the laryngeal edema is persistent and the patient is still at risk for airway closure/obstruction?
 - Why?
 - Increased capillary permeability
 - Action Needed?
 - Reverse the capillary permeability
 - How?
 - Alpha_{1 &2}
 - Treatment?
 - Administer another dose of epinephrine for the alpha stimulation
 - Consider advanced airway management
 - Maximize oxygenation

Epinephrine – Drug of Choice

- The patient remains hypotensive with signs of poor perfusion?
 - Why?
 - Persistent vasodilation
 - Action Needed?
 - Increase the intravascular pressure
 - How?
 - Vasoconstrict -Alpha_{1 &2}
 - Fill the vascular space with volume
 - Treatment?
 - Increase the SVR by administering another dose of epinephrine for the alpha stimulation and vasoconstriction
 - Initiate two large bore IVs with NS or LR infusion WO

- The patient has persistent wheezing with no other signs.
 - Why?
 - Persistent bronchoconstriction
 - Action Needed?
 - Bronchodilate
 - How?
 - Beta₂ Specific agonist
 - Nebulize?
 - Treatment?
 - Direct deposition of the Beta₂ stimulant at the site of smooth muscle contraction with limited side effects
 - Patient has muscle tremors after treatment
 - Concern? Why?
 - No. Beta₂ stimulates skeletal smooth muscle

"IT ALL MAKES SENSE"

Questions or Comments?

jjmistovich@gmail.com

